翻訳と辞書
Words near each other
・ Epilobocera
・ Epilobocera sinuatifrons
・ Epilobophora
・ Epilog (album)
・ Epilog norymberski
・ Epilogism
・ Epilogue
・ Epilogue (Blake Babies album)
・ Epilogue (disambiguation)
・ Epilogue (Epik High album)
・ Epilogue (To/Die/For album)
・ Epilogue (TV series)
・ Epilogue For W. H. Auden
・ Epigraph
・ Epigraph (literature)
Epigraph (mathematics)
・ Epigraphia Carnatica
・ Epigraphia Indica
・ Epigraphia Zeylanica
・ Epigraphical Museum
・ Epigraphodes
・ Epigraphs (album)
・ Epigraphus
・ Epigraphy
・ Epigraphy Museum of Tripoli
・ Epigrapsus
・ Epigridae
・ Epigroup
・ Epigrypera
・ Epigyne


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Epigraph (mathematics) : ウィキペディア英語版
Epigraph (mathematics)

In mathematics, the epigraph or supergraph of a function ''f'' : Rn→R is the set of points lying on or above its graph:
: \mbox f = \,\, \mu \ge f(x) \} \subseteq \mathbb^.
The strict epigraph is the epigraph with the graph itself removed:
: \mbox_S f = \,\, \mu > f(x) \} \subseteq \mathbb^.
The same definitions are valid for a function that takes values in R ∪ ∞. In this case, the epigraph is empty if and only if ''f'' is identically equal to infinity.
The domain (rather than the co-domain) of the function is not particularly important for this definition; it can be any linear space〔 or even an arbitrary set instead of \mathbb^n.
Similarly, the set of points on or below the function is its hypograph.
The epigraph can often be used to give geometrical intrepretations of the properties of convex functions or to prove these properties.
==Properties==
A function is convex if and only if its epigraph is a convex set. The epigraph of a real affine function ''g'' : Rn→R is a halfspace in Rn+1.
A function is lower semicontinuous if and only if its epigraph is closed.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Epigraph (mathematics)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.